

The 6th

Mission Idea Contest

For Achieving Sustainable Development Goals with Human Spaceflight

On-orbit Measurements of Radiation Effects on Commercial-Off-The-Shelf (COTS) Hardware for Small Satellites

Senior Shimhanda and Tomoaki Murase

Laboratory of Spacecraft Environment Interactions Engineering

Introduction (1/5)

Introduction (2/5)

- □We use COTS components in most subsystems.
- **Why COTS**?
 - Low cost
 - Fast delivery
- Demerits
 - High risk approach
 - Not space-proven/radiation-hardened

CPU(PIC)

© Kyutech

Introduction (3/5)

Effect of radiation on electronic devices

Introduction (4/5)

Implementation of irradiation of COTS components onboard ISS under actual space conditions from the viewpoint of checking the accuracy of ground test

Introduction (5/5)

Consumer parts database on micro satellite

Citizenship Satellite Initiative for Connected Industries

Satellite list	About the database	New registration application Search page How to import CSV data
Contact Us	Publication FAQ	

(https://space-cots-data.jp/)

Testing Platform

© Space BD

To develop and launch a 3U CubeSat, named SPAce Radiation eXposure (SPARX), and perform the COTS Irradiated iN Space (COINS) experiment onboard ISS, particularly in-situ measurements of total ionizing doze and on-orbit mapping of single event latchup, providing a testbed for advanced technology demonstration with a hyperspectral imager and gathering scientific data for 1 year (nominal mission duration).

□ To verify the radiation tolerance of power MOSFETs under actual space radiation environment

□To measure and map single-event-latchup in orbit by taking log of microcontroller reset events over a period of time

□To compare Earth-based testing techniques such as Cobalt-60 gamma radiation and Californium 252 (Cf 252) with onorbit radiation data

Technological Objective

• To demonstrate hyperspectral imaging of tropical cyclones in the Indian Ocean between Madagascar and the Mozambique channel with a CubeSat

10

https://www.worldvision.org/disaster-relief-news-stories/2019-cyclone-idai-facts

Experimental Concept

Ground-testing setup

Space-testing setup

Key Performance Parameters

Functional Requirements

- The mission shall withstand deployment forces, vibration, and fluctuating operation temperatures
- The mission shall survive a total dose equivalent to 30 krad

Performance Requirements

- The structural frame shall be compliant with 3U CubeSat standards
- Uninterrupted electrical power shall be sourced from i-SEEP via USB cable and peak power consumption shall not exceed 50 W
- The on-board computer shall transfer scientific data from flash memory to i-SEEP via Ethernet (IEEE 802.11n) and data rate shall not exceed 100 kbps

Space Segment (1/5)

Test Articles for Single Events

Ground-testing data for most these microcontrollers are currently available

Test Articles for Ionizing Doze

MOSFET	P- Channel IRLML6402	N-Channel IRF620PBF	P-Channel NTD2955
Power consumption	153.0 mW	46.05 mW	49.06 mW
Manufacturer	International Rectifier	Vishay	ON Semiconductor

Pch IRLML6402

Nch IRF620PBF

Pch NTD2955

Kyushu Institute of Technology

SPARX's Block Diagram

Space Segment (5/5)

Mission Boards Sequence

Radiation Mission

Concept of Operations (2/2)

Hyperspectral Imager

VIS-NIR spectral range	High frame rate RGB Matrix imager or Multispectral line scanning imager or Hyperspectral line scanning imager
Spatial Resolution	9.6m at 500 km
Swath	32 km at 500km
Spectral Bands Multispectral	PAN + up to 10 VIS-NIR bands or RGB Bayer matrix or 150 Hyperspectral bands
Integrated mass storage	160 GB
Power consumption	during readout mode $< 2.5W$ during imaging mode $< 3.5W$

Implementation Plan

Project Costs and Partners

Kyushu Institute of Technology

SPARX I	La SEINE	VICE A TECHNOLOGY
Task /Item	Cost (USD)	Financer
COTS Components +	6700	National Commission on
3U Chassis +		Research Science and
PCBs Fabrication		Technology
Hyperspectral Imager	160,000	Mozambique National
	<i>,</i>	Meteorology Institute +
		African Union
Environmental Testing	30,000	LaSEINE
H3 Launch Vehicle +	419,754.50	JAXA
i-SEEP Facility +		WMO
Payload Return +		Crowd Funding
Total	616, 454.50	
vutech	·	

Risks and Countermeasures

Risk	Probability	Countermeasure
Single Event Upsets	Medium	Error Correction Code (ECC)
Single Event Latchup	Medium	Power Cycling/Periodic Restarts
Flash Memory Failure	High	Redundant Memories
Single Event Burnout	Medium	Shielding
Large Data Rate	High	Onboard Data Compression

Project Organization

vushu Institute of Technology

References

[1] D. Sinclair and J. Dyer, Radiation effects and COTS parts in SmallSats. 27th Annual AIAA/USU Conference on Small Satellites, SSC13-IV-3 (2013)

[2] S. Kayali, Reliability of Compound Semiconductor Devices for Space Applications, *Microelectronics Reliability* 1723-1736 (1999)

[3] K. A. LaBel *et al.*, Radiation Evaluation Method of Commercial Off-The-Shelf (COTS) electronic Printed Circuit Boards (PCBs), *Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471)*, Fontevraud, France, 528-534 (1999)

[4] S. Kayali, Utilization of COTS Electronics in Space Application, Reliability Challenges and Reality (2002)

[5] J.C. Javier, Radiation testing of COTS electronic parts for lean satellite. Master Thesis, Kyushu Institute of Technology (2018)

[6] BIRDS Project Newsletter – No .44. Available online at: <u>http://birds1.birds-project.com/newsletter.html</u> (accessed October 2019)

[7] R. Ecoffet, Spacecraft Anomalies Associated with Radiation Effects. *RADECS 2013 Short Course Proceedings, Chap. VIII* (2013)

[8] M. Cho, Radiation. Available online at: <u>https://kyutech-</u> laplace.net/Class/2019/Class_SET/Materials/2019_Space_env_test_6_radiation_v5.pdf (accessed September 2019)

[9] T. Murase, Improvement of the value of commercial components by improving radiation test. Kyushu Institute of Technology (2019)

[10] Solar Cycle 25 Preliminary Forecast. Available online at: <u>https://www.weather.gov/news/190504-sun-activity-in-solar-cycle</u> (accessed October 2019)

[11] V. Gupta. Analysis of single event radiation effects and fault mechanisms in SRAM, FRAM and NAND Flash: application to the MTCube nanosatellite project. *Electronics*. Universite Montpellier (2017)

[12] 2019 Cyclone Idai: Facts, FAQs, and how to help. Available online at: <u>https://www.worldvision.org/disaster-relief-news-stories/2019-cyclone-idai-facts</u> (accessed October 2019)

[13] Chameleon Imager. Available online at: <u>https://www.cubesatshop.com/product/chameleon-imager/</u> (accessed October 2019)

Introduction (4/5)

Total Ionizing Doze

Introduction (4/5)

Single Event Latchup (SEL)

- An abnormal high-current state in a device caused by the passage of a single energetic particle through sensitive regions of the device structure and resulting in the loss of device functionality

Introduction (5/5)

ゲート電圧 MOS-FETの動作特性

- The gate needs less voltage to turn on the switch by the positive voltage produced by the remaining positive charge
- Decrease of the threshold voltage
- Change of MOS operational points
- The effect disappears as the holes move away from the insulation layer
- - Takes a long time(> 10^8 sec)

Single Event Effects (SEE)

- Disruption in function of electronic circuits due to single ionizing particle interaction.
 - Single Event Upset (SEU) bit flips
 - Single Event Latchup (SEL) parasitic
 - Single Event Functional Interrupt (SEFI)
 Soft error can be recoverable without power reserved.
 - Soft error, can be recoverable without power reset, unlike SEL
 - Single Event Burnout (SEB)
 - Current induced by heavy ion penetration destroys Power MOSFET
 - Single Event Gate Rupture (SEGR)
 - Failure of oxide layer of Power MOSFET by current

Doug Sinclair and Jonathan Dyer, "Radiation Effects and COTS Parts in SmallSats", Small Satellite Conference, 2013

K Kyushu Institute of Technology

Space Radiation

- **Particles** or **electromagnetic** wave with energy high enough to affect chemical or nuclear properties of material.
- Charged particles
 - Electron
 - Proton
 - Alpha particle (nucleus of Helium)
 - Heavy ions
- Particle
 - Neutron

• Electromagnetic wave (photon)

- Gamma ray, typically less than 10-12m (>1MeV)
 - – Originate from nuclear interactions
- X ray, typically 10-11 ~ 10-8 m (100~100keV)
 - Originate from collisions of charged particles
- UV ray, typically 10nm ~ 380nm (3eV~100keV)

Launch & Rendezvous to ISS

Definitions

Radiation Effect	Total lonizing Doze (TID)	Single Event Effects (SEE)	Displacement Damage
Definition	Material damage caused by ionizing radiation sources. Qualified by deposited energy per mass for a given material with units of Gray (SI) or Rad [1].	Disruption in function of electronic circuits due to single ionizing particle interaction [1].	Change of semiconductor properties such as carrier lifetime due to protons and energetic electrons.
Degree of impact	Cumulative (Semi- infinite)	Abrupt (Transient)	Cumulative (Non- reversal)

