Hermes CubeSat - Speakers

Martí Pujol Gasulla

Téo Lenormand

Paul Michel

Arnold Hellin

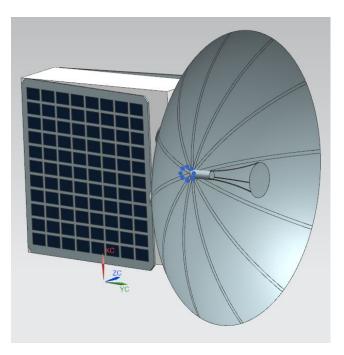
Hermes Cubesat

On-site data gathering for accurate mapping of the Main Asteroid Belt.

Martí Pujol Gasulla, Arnold Hellin, Teo Lenormand, Paul Michel

Table of Contents

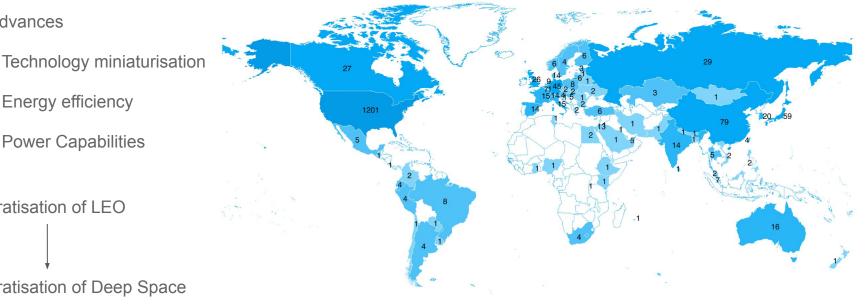
Motivation


Mission Objectives

Concept of Operations

Cubesat Architecture

Implementation Plan


Conclusion

Motivation

Key Advances

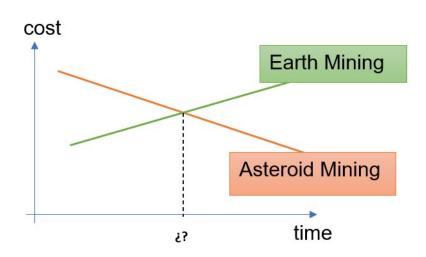
Launched nanosatellites

Democratisation of Deep Space

Energy efficiency

Power Capabilities

Democratisation of LEO


www.nanosats.eu

Motivation

Asteroid Mining

Currently, it does not make economic sense.

The vision: once it is economically viable, have an extensive database for asteroids.

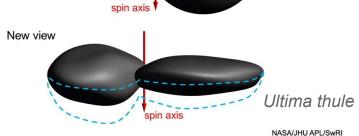
Why?

Ground observations of asteroids are not 100% reliable

Recent examples: Ryugu and Ultima thule.

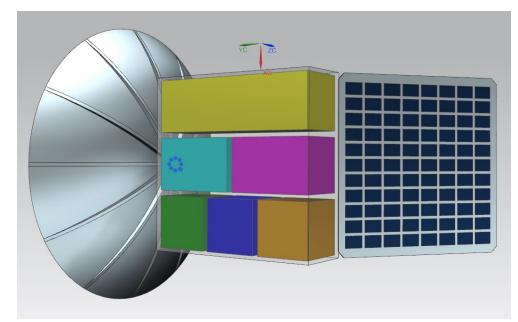
Current numbers for asteroid population are based

on indirect estimations.


Extrapolation methods

Surface impacts on moons

Old view


How? The cubesat & Orbit

Main Spacecraft Constraints:

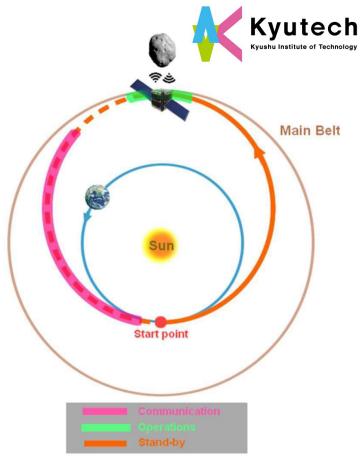
Less than 100 kg and 1m³.

- Launcher can reach deep space.
- Deep Space Network ground stations.

Launch must be before 2030.

Hermes Cubesat concept.

How? The cubesat & Orbit


Highly elliptical orbit around the Sun.

3 mission phases:

Communication

Operation

Stand-by

Orbit diagram, not to scale.

2. Mission objectives

Phase O: Radar detection

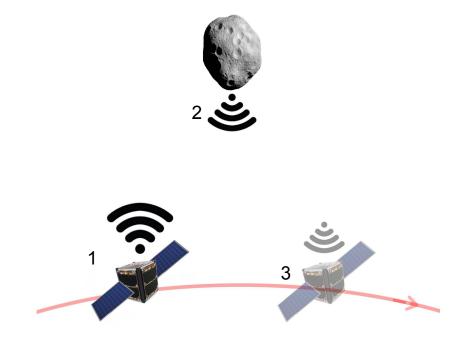


Table 1: Characteristics of Raincube's radar.

Raincube	Value
Instrument	Ka-Band radar
Frequency	35.75 GHz
Antenna	0.5m deployable
Horizontal resolution	<10 km
Vertical resolution	<250 m
Sensitivity	20 dBz

Collected information:

- Doppler effect;
- Time delay;
- Magnitude.

Phase O: Radar detection

Example: Raincube mission's deployable radar (not commercially available, under development).

Deploys from 1.5U to 2.5U. Very small and lightweight.

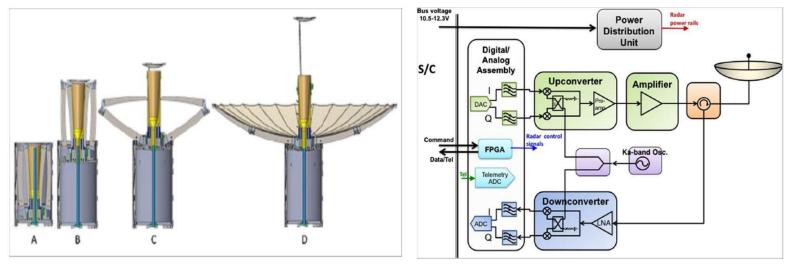


Figure 1: Deployment sequence of the Raincube radar.

Figure 2: Block diagram for the Raincube radar.

Phase T: Earth communication

Table 2: Communication data characteristics.

Characteristic	Value	
Radar data rate	50 kbit/s	
Total amount of data	432 Gbit	X100 days for the phase O
Antenna data rate	32 kbit/s	
Duration of communication	156 days	

Figures in table 2 correspond to the unprocessed data.

The total amount of data can be reduced with onboard treatment (void suppression, compression...).

3. Concept of operations

Inclination range of the orbit (Figure 4): $[0 \le i \le 20^{\circ}]$

- Eccentricity range of the orbit (Figure 3): $[0.05 \le e \le 0.3]$ \rightarrow No specific launch window
- Wide asteroid belt and large population of small bodies
- \rightarrow Empty regions between asteroids: low probability of collision risk with asteroids

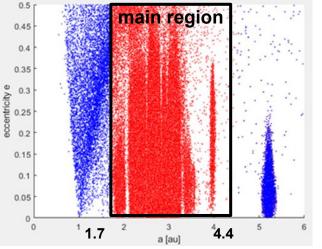


Figure 3: eccentricities of 1,048,514 numbered minor planets versus their distance to the Sun.

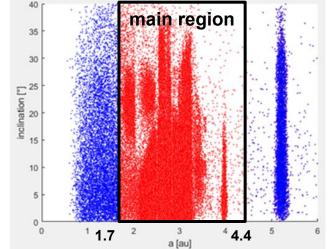
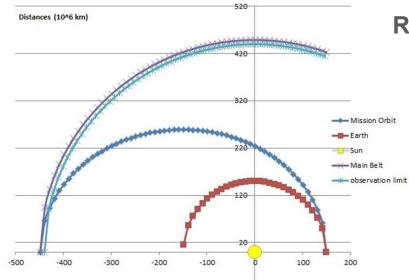



Figure 4: Inclination of 1,048,514 numbered minor planets versus their distance to the Sun.

The satellite will be able to fly-by multiple times on the orbit shown in figure 4.

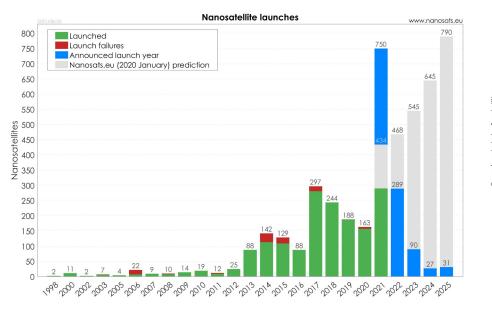
The fly-by zone is a corridor thick by **2%** the distance from the sun (**between 2.2au and 2.24au**)

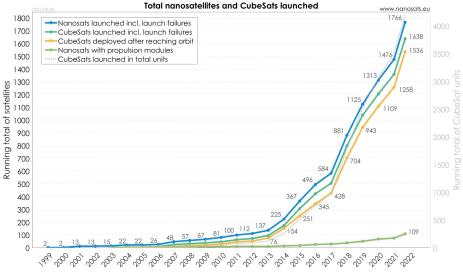
Required ΔV : [5.14; 5.20] km/s

Table 3: Parameters of the orbit.

a	2.99x10^8	km
b	2.59x10^8	km
e	0.5	-
Т	2.83	years

Figure 5: Limit for the observation orbit.



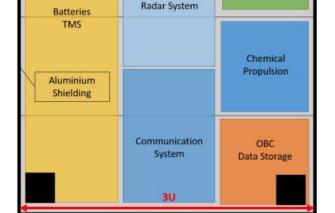

4. Cubesat architecture

MIC7 - Hermes Cubesat - Tokyo, 2021 November 13th

Cubesats: spearhead of space development

Star Tracker

IMU


Equipment and sub-systems

Cubesats' main attributes are their off-the-shelf components allowing:

- Faster development time
- Cost reduction
- Repeatability

Figure 6: Off-the-shelf cubesat reaction wheel and IMU.

Undeployed

Reaction Wheels

Cold Gas Thruster

Figure 7: Proposed cubesat architecture for Hermes.

The architecture of the cubesat

9U cubesat, 3x3U

Main hardware:

- Aluminium Structure _
- Radiation shielding _
- Thermal management _
- Solar panels _
- Battery _
- OBC and data storage _ IMU
- ADCU
- Asteroid Radar Detection System _
- Communication system _

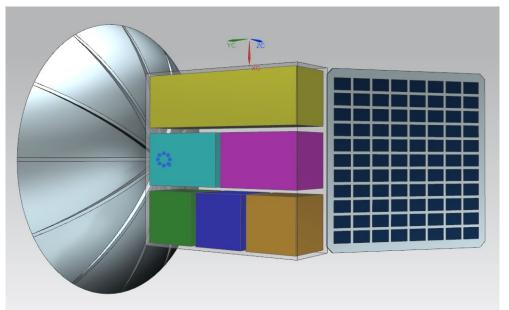


Figure 8: Hermes Cubesat concept.

5. Implementation plan

Total life cycle cost

Table 4: Es	stimation of	the total cost.
-------------	--------------	-----------------

Concept	Cost (US\$)
Project management/Integration/Test	3,000,000
Space launch system (average)	6,000,000
Satellite flight model (FM)	8,000,000
ADCS	80,000
Payload (radar)	1,000,000
Structure	800,000
Communication	3,000,000
Propulsion	1,500,000
Power system	2,520,000
Thermal system	800,000
On-board computer	600,000
Engineering model (EM)	8,000,000
TOTAL (EM+FM) + 25% margin	35,300,000

Few existing projects of CubeSats in deep space (e.g. MarCO, 6U, 13.5 kg, 18.5 M\$)

Total life cycle cost including design, development, component assembly, integration, testing, launch, and operations

Cost maximised: on the shelf components requiring some modifications

Facilities

Campus of Kyushu Institute of Technology (Kitakyushu, Fukuoka, Japan)

→ Operations related to the assembly and tests

Purpose: development time, cost, and mission risks factors

Project organisation

- 32 people: 9 people in the mechanical team
 - 8 people in the thermal team
 - 5 people in the solar array team
 - 4 people in the onboard computer team
- Scientists and engineers incited to work together

Monthly meeting between the supervisor of scientific/engineering teams

- 3 people in orbit and altitude control team
- 2 people for management
- 1 expert in payload

Project schedule

Kyutech 1906101 12121024 0101 10170 1400500 K 2122000 35/06/2023 Figure 9: Gantt Diagram of the project.

Maximise team collaboration

Minimise development time

Total duration: 1400 days

ATP (Authority to Proceed)

Prelim. Design Review (PDR) Mission & Payload Designs Mission Design Review (MDR) Avionics & Design Propulsion

Critical Design Review (CDR) Update final Propulsion Designs

Integrate Subsystem Components

Subsystem Functional Testing

Pre-ship Acceptance Review Packing, Shipment & Delivery Final preparation and Launch

Propulsion Fabrication Off-the-shelf components

> Full System Integration Full System Testing

Prelim. Avionic Designs & Analysis Prelim. Mission & Payload Designs

Conclusion

MIC7 - Hermes Cubesat - Tokyo, 2021 November 13th

24

Hermes Cubesat

On-site data gathering for accurate mapping of the Main Asteroid Belt.

Thank you for your attention

